Styli ball grading

When precision counts

- The sphericity of your stylus ball can affect your CMM measurements.
- To ensure the accuracy of your measurements, use DIN 5401:2002 Grade 5 balls.
- As standard, Renishaw uses Grade 5 styli balls with a sphericity of 0,13 microns and not the lesser Grade 10 that most manufacturers use as standard. Grade 3 balls are also offered.

DIN 5401:2002

Grade	Nominal size in mm		Size deviations* $\mu \mathrm{m}$	Ball dia. variation ($\mu \mathrm{m})$ V_{Dws}	Deviation from sphere form $(\mu \mathrm{m})$ t_{Dw}	Surface roughness ($\mu \mathrm{m})$ R_{a}
	over to					
3	-	12	± 5.32	0.08	0.08	0.010
5	-	12	± 5.63	0.13	0.13	0.014
10	-	25	± 9.75	0.25	0.25	0.020
16	-	25	± 11.4	0.40	0.40	0.025
20	-	38	± 11.5	0.50	0.50	0.032

* Values relate to the mean diameter of a ball, D_{wm}
- The use of a Grade 10 ball instead of Renishaw's Grade 5 can result in CMM first term measurement errors increasing by up to $15 \% *$.
** Based on a CMM tested to BS EN ISO 10360-2:2009 accuracy specification of MPE $_{\mathrm{E}}(0,8+2 \mathrm{~L} / 1000) \mu \mathrm{m}$.

$D_{w}(\min)$

Ball diameter variation $V_{\text {Dws }}=D_{w}(\max)-D_{w}(\min)$

$\mathrm{R}_{\mathrm{c}}=$ Radius of circumscribing circle $R_{p}=$ Smallest radius Deviation from spherical form $T_{D W}=R_{C}-R_{p}$
apply innovation ${ }^{\text {Tw }}$

Nominal ball diameter D_{w}

The diameter value used to identify the ball size.

Ball diameter variation $\mathrm{V}_{\text {Dws }}$

The difference between the largest and smallest diameters of one ball.

Deviation from a spherical form, t_{Dw}

The greatest radial distance in any radia plane between a sphere circumscribed around the ball surface and any point on the ball surface
www.renishaw.com
© 2006-2018 Renishaw plc. All rights reserved.

